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AbIItract-The plane contact problem for an infinite elastic layer lying on an elastic half space is considered.
The layer is acted upon by a uniform c1ampillll pressure Po, a uniform vertical body force P., due to the
effect of gravity in the layer and a concentrated vertical line load P. It is assumed that the contact between
the layer and the half space is frictionless and that only compressive IlOrmal tractions can be transmitted
throua/1 the interface. The contact a101lll the interface will be continuous if the value of P is less than a
critical value Pc,. However. for P> pc. interface separation takes place alollll a certain finite region. First,
the problem of continuous contact is solved and the value PO' is determined. Then the discontinuous
contact problem is formulated in terms of a singular integral equation. Two loadillll conditions are
considered assuming that the concentrated line load P is either a tensile load or a compressive load.
Numerical results for Pc.. contact stress distributions. and separation regions are given for various material
combinations.

I. INTRODUCTION

This paper is concerned with the plane contact problem for an elastic layer resting on an elastic
foundation. The problem has attracted considerable attention in the past due to its applicability
to a variety of important problems related to foundation-superstructure interaction (see, e.g.
[1-7]). In most of previous studies the layer is pressed locally against the foundation. In the
earlier studies the contact between the layer and the foundation was assumed to be either
perfect adhesion or frictionless and to be continuous. However, in [1] it was shown that due to
the bending of the layer under local compressive loads, in the absence of gravity effects, the
contact area would decrease to a finite size which is independent of the magnitude of the load.
This property holds also for loading through a ftat-ended rigid stamp with sharp edges whereas
for other stamp profiles the size of the contact area is a function of the resultant compressive
force [8, 9]. In most of previous publications the effect of gravity is neglected. Under tensile
loads one cannot obtain realistic solutions for frictionless horizontal layer problems without
considering the effect of gravity or a possible clamping pressure. Some examples taking the
effect of gravity into account may be found in [10-14]. In these references the layer rests on a
frictionless, horizontal, rigid foundation. Studies [10-13] consider plane problems whereas [14]
considers the axisymmetric problem. In such problems the contact area is infinite and when the
magnitude of the external load exceeds a certain critical value a separation takes place between
the layer and the foundation.

In this paper, the plane elastostatic problem of an infinite horizontal layer lying on a half
space is considered. It is assumed that the frictionless layer-subspace interface can transmit
compressive normal tractions only. The layer is under the action of a uniform clamping
pressure on its top surface and a uniform body force due to gravity. In addition, a concentrated
vertical line load is applied on the top surface which can be tensile or compressive. The
problem has been solved in [11 and 12] for a rigid subspace and for tensile and compressive line
loads. respectively. On the other hand in most structural applications the foundation is elastic
with a Young's modulus which is generally less than that of the layer. Hence, for such problems
the results given in this paper are somewhat more realistic.

2. FORMULATION

Consider an infinite elastic layer of thickness h in smooth contact with a semi-infinite elastic
foundation. The geometry and coordinate system are shown in Fig. 1. Let Pig be the body force
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Fig. I. Geometry for the elastic layer lying on an elastic foundation (tensile line load. discontinuous contact

case).

density acting vertically in the layer and note that the body force acting in the foundation is
negJected since it does not disturb the contact pressure distribution. Writing

UI = Uip + UII.. VI = Vip + V/It, (i = 1, 2), (la, b)

the particular part of the displacement components corresponding to Ptg and the clamping
pressure Po may be obtained separately as[ll)

where

3-KI
Ulp = 161ot1 PeX,

1- /(1 eJl h 1+ /(1
VtP=-I+ 2 y( -Y)--16pehy+A,

/(1 ILl loti

3- /(2

U2p = 81ot2 PeX,

1+K2
v2p = --8-P•Y+A,

1ot2

(21, b)

(3a, b)

(4)

u and v are the x and y-components of the displacement vector, lot is the shear modUlus,
K =3- 4v for plane strain, /( =(3 - v)/(I +v) for plane stress, v being the Poisson's ratio. The
subscripts 1and 2 refer to the layer and the foundation, respectively. The constant A appearing
in (2b) and (3b) is the (yet unknown) rigid body displacement term.

Now, observing that x =0 is a plane of symmetry, the homogeneous part of the displace­
ment components for the layer and for the half space may be written as [8)

UI/, =1. r [(B + yC) e-'Y+ (D +yE) e'Y) sin (sx) ds.
1f' Jo

VI/, =~L" {[B + (:1 + y)CJ e-'Y+ [-D+ (:1-Y)EJelY } cos (sx)ds,

2 L" .U211 =- (F +yG) e'Y sin (sx) ds,
1f' 0

V211 =~ L" [-F+ (:2_ Y)G] e'Y cos (sx)ds.

(Sa, b)

(6a, b)

The stress components of interest are found from (1) to (3), (5) and (6) using Hooke's law as
follows:
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O'yyl=~ f' {- [S(B +yC)+ 1(1; I CJe-S
.'·

+ [-S(D+ yE) + 1(1; IEJe'Y } cos (sx) ds + p,gy - p~,

Txyl =~ f' {- [S(B+ yC)+ 1(1; I CJe-s
.'

+[S(D+ yE)_I(I; IE] eSY } sin (sx) ds,

4 roo [ + I JO'YY2=~Jo -s(F+YO)+~O e'Ycos(sx)ds-p~,

T..,2 =~L" [S(F + yO) _1(2; 10 Je'y sin (sx) ds.

389

(7a, b)

(8a, b)

The unknown functions B, ... , 0 are determined by using the continuity and boundary
conditions at y = 0 and y = h.

3. THE CASE OF CONTINUOUS CONTACT (O<P<P<r)

Let the layer be subjected to a uniform pressure Po and a concentrated lifting force P (per
unit length in z-direction) along its boundary y =h. If P is sufficiently small the contact along
the interface y = 0 will be continuous and B, . ..• 0 should be determined from the following
boundary and continuity conditions:

P
Txyl(X, h) =0, O'yyl(X, h) = 2~(X) - po, (0 S x < 00),

Txyl(X, 0) =0, Txy2(X, 0) =0, 0 S x < 00,

O'yyl(X, 0) =O'yy2(X, 0), 0 S x < 00,

(9a, b)

(lOa-d)

where, aside from a rigid body displacement, (IOd) is equivalent to VI(X. 0) = V2(X,0). One should
note that determination of the rigid body displacement term A requires an additional condition
in the form of prescribing the vertical displacement of an arbitrary point. After determining
B, ... , 0 from (9) and (10) the normalized contact pressure becomes

where

21" I (lJJX)p(x)=I-A; 0 ~[(w+l)e"+(w-l)e-"]cos II dw, (Osx<oo),

p(X) =- O'yyl(X, O)/p.. A = Plp~,

11 =(1 +m) ez' +4w - 2m(2w2+1)-(1-m) e-z',

w =sh, m=1-',(K2 +1)II-'i,KI + I).

(II)

(l2a~)

From (11) it is seen that p(x) =I for A=0 and up to a certain value of Ap(x) remains positive
and the contact on y =0 plane remains continuous. The critical value of the load factor A=Ac,

at which the interface separation starts at x =0 can be obtained from (11) by using the
condition

giving

p(O) =0,

I 21" I-=- A[(W + l)eOl +(w -I)e-OI
] dw.

Ac, 1(' 0 ~

(13)

(14)
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4. THE CASE OF DISCONTINUOUS CONTACT (P>P,,)

When the value of P exceeds Per = A..,p.h the interface separation takes place around x =0
as shown in Fig. I. Equations (IH8) and the conditions (9), (lOa-c) are still valid. However,
(lOd) should be replaced by the following mixed boundary conditions

O"yy(x, 0) = 0, (O:s X < a),

where 2a is the length of the separation region. Defining the following function

a
!(x) = ax [VI(X, +0) - vb, -0)), (O:s X < ce),

(1Sa, b)

(16)

B, .. . ,G can be determined in terms of !(x) from (9), (10a-c), and (16). Then (15a) gives the
following singular integral equation

fl [_1_+ kl(r, I)]g(t)dl +Ak2(r) = 17, (-I<r<I),
_I 1 - r

where

(t)=~ !(at)
g 1+ K. (l +m)p;

k.(r, t) = - 2(~) f i(1 +2w +2w2
- e-2

"') sin [~w(t - r)] dw,

k2(r) = 2f ~[(w + \) e'" +(w -I) e-"'] cos (xwr) dw,

r= x/a.

Equation (1Sb) is seen to be equivalent to

g(t) = 0, (1 < 1< 00), 11 g(/) dl = O.
-I

(17)

(18a-d)

(19a, b)

Because of symmetry g(t) = - g(- I). Therefore, the single-valuedness condition (19b) is
automatically satisfied. Because of the requirement of smooth contact at x =a, !(a) =0 and the
index of the singular integral equation (17) is -I. Consequently the function g(1) may be
expressed in the form

(20)

where <1>(/) is a bounded odd function in [-I, I]. The solution g(/) must satisfy the following
consistency condition (15]

from which the length of the separation region is determined.
The normalized contact pressure now becomes

I fl [ I ] Ap(x)=p(ar)=I-- -I-+k.(r,/) g(/)d/--k2(r), (r>I).
17 _. - r 17

(21)

(22)

The singular integral equation (17) can easily be reduced to the following system of linear
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algebraic equations by employing the appropriate Gauss-Chebyshev integration formula[16]

where

ft l-t-2
[ I ] AL--' --+kl(rj,lj ) q,(td+-k2(rj) = I,

i-I n+l Ij-rj TT

(j = I, ... , n + 1),

I; =cos (n
i
: 1)' (i =1, ... , n),

(
2j -ITT) .

rj =cos n + 1"2' (J = I, ... , n + 1).

(23)

(24a, b)

Note that (23) contains (n + 1) equations to determine (n +1) unknowns q,(I;), (i =1, ... ,n),
and a. It can be shown that by using this technique to solve the integral equation the
consistency condition (21) is automatically satisfied[16].

S. THE CASE OF COMPRESSIVE FORCE (P<O)

Now suppose that the concentrated lifting force P in Fig. 1 is replaced by a compressive
force (see the insert in Figs. 8-11). The formulation given in Section 2 is still valid. If the value
of compressive line load P is sufficiently small, the contact along the interface will be
continuous and eqns (9a) and (10) will still be valid. However, (9b) should be replaced by

and hence the normalized contact pressure defined by (12a) becomes

2 (.. 1 (tIJX)p(x) =1+ A:; Jo ~[(CIl + 1) eO' + (Cil - 1) e-OI
] cos II dCll, (o:s; x < 00).

(25)

(26)

This expression is applicable for A< Ac, for which p(x) > O. When A=Acn p(x) becomes zero
and interface separation starts at some location x =xc,¢ O. The critical load factor Ac, and the
corresponding location of initiation of interface separation xc, can be determined through the
use of following conditions

d
p(Xc,) =0, dxP(Xc,) =o. (27a, b)

For A> Ac, the pressure will be zero in a certain range b < Ixl < c(see the insert in Fig. 11).
In this case the problem may be formulated as

where now

II [I ~ + 1 + b+ kl(r, 1)]g(l) dl - Ak2(r) =TT,
-I r l+r+2-c-

c-b

(-1 < r< 1),

_~ 1 (C-b C+b)
g(/)-I+ICI(1+m)p/ 2 t+ 2 '

(C-b)L"1 { [C-b ]kl(r, I) =- -h- 0 ~(1 +2C1l +2C1l2 - e-200
) sin CIl2it(1 - r)

. [c-b C+b]}+SlRCIl 2it(t+r)+-h- dCll,

(28)
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k2(r) = 2ri«w + I) e'" + (w - I) COl cos [w(c~b r + c~b) ] dw,

2x c+b
r= c-b - c-b' (29a-d)

The singular integral equation (28) would then reduce to the following system of equations

" I - 1.
2

[ I I ] A
~71 -1-.+ +b+k1(r;.I;) 4JU;)--k2i,fj) = I,
I-I n ,'i l+r.+2-c- 1T

I I c-b

(j = I, ... , n + I), (30)

where 41(1) and Ii, rj are defined in (20) and (24). respectively. In this case the single­
valuedness condition (19b) may be expressed as[l6)

" 1-t-2

~ -+I' 41(1;) =O.
i-I n

(31)

Equations (30) and (31) constitute a system of (n +2) equations for (n +2) unknowns. 4J(ld,
(; =1..... n). band c. Again the consistency condition is satisfied automatically [l6]. The
normalized contact pressure will in this case be

p(x)= 1-1.r [I~ + I +b +k,(r,t)]g(l)dl+!k2(r),
1T -I r l+r+2-c- 1T

. c-b

(/r/ > I). (32)

6. RESULTS

Referring to eqn (l2) for the definitions of ihe dimensionless bielastic constant m and the
dimensionless load factor A. Fig. 2 shows the relation between m and the critical load factor Ac,

at which interface separation initiates. Acrl and Ac,2 are the critical load factors corresponding to
tensile and compressive line loads. respectively. m = 0 represents the case of an elastic layer
resting on a rigid foundation [11, 12] whereas m = 1 may represent a layer and a foundation of
identical materials. For m = 0, Ac,1 = 1.088 and Ac,2 = 44.139 are obtained which are the values
given in [11, 12). Results of these references were checked to be in good aareement with the
present analysis. Ac, increases with increasing m. This is expected due to the fact that as m
increases the layer gets stiffer relative to the foundation and it becomes harder to bend the
layer.

Figure 3 shows the relationship between the tensile load factor and the length of the
separation region. For a fixed separation area the stiffer layer requires a greater load factor. For
a fixed value of m separation region gets larger as A increases. Figures 4-7 show the normalized
contact pressure distributions for various values of m and A for tensile line load case. The
contact pressure is zero at x =0 for A=Aero It tends to unity as x1h increases and has peaks
around x =± a. The lifted portion of the layer is partially supported by these "concentrated"
pressure peaks around x = ± a. Consider. for example, the case of m = 0.1 and a = 2h for which
A =2.84 (see Fig. 3). In this case the lifting tensile load (per unit lenath in z-direction) is P =2.84p,h
whereas the downward force acting on the lifted portion of the layer is 2ap. =4p)a. The difference
1.16p,h is supported by the peaks of the pressure distnbution. Contact pressure distribution is
heavily dependent on m and exhibits smoothness as m increases. For sufficiently large values of m
the layer. which will be considerably stiffer than the foundation. is lifted as awhole instead of being
bent and therefore pressure concentrations would be insignificant.
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Fag. S. Normalized contact pressure distributions for m = I (tensile line load case).
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Fig. 6. Normalized contact pressure distributions for m =10 (tensile line load case).
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Fag. 7. Normalized contact pressure distributions for m = I()()() (tensile line load case).
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Figures 8-10 show the normalized contact pressure distributions for the case of compressive
line load. In order to include the entire pressure distribution and to give sufficient details in
compact forms, different scales have been used for p(x) > 2 and for p(x) < 2. The contact
pressure has a sharp peak at x =0 where the concentrated force is applied. It seems as if the
lifted portions of the layer are supported by the rounded reaction around x =O. For a fixed
value of the load factor Athe stiffer layer transmits the pressure to the foundation more evenly.
The value of the critical load factor Ac, and distance to the location of zero pressure Xc,
increases as m increases.

In Fig. 11 the size and the location of the separation region for discontinuous contact case
under the action of compressive line load are given for m = 1. For A= Acr = 140.39, b = c =
xc, =2.94 h. As A~OO, which is equivalent to p, ~O, clh tends to infinity wheras blh tends to
1.3. This is the value given in [8] for p, = O.

120

5 6

Fig. 8. Normalized contact pressure distributions for m.. 0.1 (compressive line load case), Acr " 56.42,
z.,-lJ6h.

200

Fag. 9. Normalized contact pressure distributions for m- I (compressive line load case), Acr - 140.39,
z., -2.94h.
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Fig. 10. Normalized contact pressure distributions for m= 10 (compressive line load case), Acr = 250.67.
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Fig. II. Location and size of separation region as a function of the load factor Afor m= I (compressive
line load case), Acr = 140.39, xcrlh = 2.94.
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